Design of a Novel Superwideband Dual Port Antenna with Second-Order Hilbert Branches and a Modified T-Decoupling Structure

Author:

Nan Jingchang1,Pan Junru1ORCID,Han Xinxin1,Wang Yifei1

Affiliation:

1. The Key Laboratory of Wireless Communication Circuit System and Artificial Intelligence, School of Electronics and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China

Abstract

A novel super wideband (SWB) dual port antenna with second-order Hilbert branches and a modified T-decoupling structure is proposed. The overall size of the antenna is only 32 mm × 26 mm × 1 mm. The SWB antenna front comprises a “house” shaped radiating patch and a trapezoidal-shaped microstrip line. Two SWB antenna units are placed symmetrically on FR4 dielectric substrate to form the SWB-MIMO (multiple-in multiple-out) antenna. Two second-order Hilbert branches expand the wideband of the SWB-MIMO antenna. The antenna decoupling is mainly achieved by loading a fence-like “T” decoupling structure on the ground plane. The antenna is also miniaturized and isolated by adjusting the distance between the radiating patches of the units. The simulations and measurements show that the SWB-MIMO antenna operates in the frequency band of 1.98-30.8 GHz (175.84% relative bandwidth). The bandwidth dimensional ratio (BDR) (BDR is a measure of the compactness of the antenna, the higher the BDR, the better the compactness of the antenna, and the wider the working bandwidth of the antenna.) is 14653.33. The overall isolation is below −16.4 dB, and the important part (8.5–24.1 GHz) is below −20 dB. The envelope correlation coefficient (ECC) is less than 0.03, and the radiation characteristics are excellent.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3