A Novel Technique for Handwritten Digit Recognition Using Deep Learning

Author:

Ahmed Syed Sohail1ORCID,Mehmood Zahid23ORCID,Awan Imran Ahmad1ORCID,Yousaf Rehan Mehmood4ORCID

Affiliation:

1. Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudi Arabia

2. Department of Computer Engineering, University of Engineering and Technology, Taxila 47050, Pakistan

3. The FAMLIR Group, The University of Lahore, Lahore 54000, Pakistan

4. University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 44000, Pakistan

Abstract

Handwritten digit recognition (HDR) shows a significant application in the area of information processing. However, correct recognition of such characters from images is a complicated task due to immense variations in the writing style of people. Moreover, the occurrence of several image artifacts like the existence of intensity variations, blurring, and noise complicates this process. In the proposed method, we have tried to overcome the aforementioned limitations by introducing a deep learning- (DL-) based technique, namely, EfficientDet-D4, for numeral categorization. Initially, the input images are annotated to exactly show the region of interest (ROI). In the next phase, these images are used to train the EfficientNet-B4-based EfficientDet-D4 model to detect and categorize the numerals into their respective classes from zero to nine. We have tested the proposed model over the MNIST dataset to demonstrate its efficacy and attained an average accuracy value of 99.83%. Furthermore, we have accomplished the cross-dataset evaluation on the USPS database and achieved an accuracy value of 99.10%. Both the visual and reported experimental results show that our method can accurately classify the HDR from images even with the varying writing style and under the presence of various sample artifacts like noise, blurring, chrominance, position, and size variations of numerals. Moreover, the introduced approach is capable of generalizing well to unseen cases which confirms that the EfficientDet-D4 model is an effective solution to numeral recognition.

Funder

Pir Mehr Ali Shah Arid Agriculture University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3