Significance of Broken μ − τ Symmetry in Correlating δ CP , θ 13 , Lightest Neutrino Mass, and Neutrinoless Double Beta Decay 0 ν β β

Author:

Ghosh Gayatri12ORCID

Affiliation:

1. Department of Physics, Gauhati University, Jalukbari, Assam 781015, India

2. Department of Physics, Pandit Deendayal Upadhyaya Mahavidyalaya, Karimganj, Assam 788723, India

Abstract

Leptonic CP violating phase δ CP in the light neutrino sector and leptogenesis via present matter-antimatter asymmetry of the Universe entails each other. Probing CP violation in light neutrino oscillation is one of the challenging tasks today. The reactor mixing angle θ 13 measured in reactor experiments, LBL, and DUNE with high precision in neutrino experiments indicates towards the vast dimensions of scope to detect δ CP . The correlation between leptonic Dirac CPV phase δ CP , reactor mixing angle θ 13 , lightest neutrino mass m 1 , and matter-antimatter asymmetry of the Universe within the framework of μ τ symmetry breaking assuming the type I seesaw dominance is extensively studied here. Here, a SO(10) GUT model with flavor μ τ symmetry is considered. In this work, the idea is to link baryogenesis through leptogenesis and the hint of CP violation in the neutrino oscillation data to a breaking of the mu-tau symmetry. Small tiny breaking of the μ τ symmetry allows a large Dirac CP violating phase in neutrino oscillation which in turn is characterized by awareness of measured value of θ 13 and to provide a hint towards a better understanding of the experimentally observed near-maximal value of ν μ ν τ mixing angle θ 23 π / 4 . Precise breaking of the μ τ symmetry is achieved by adding a 120-plet Higgs to the 10 + 1 2 ¯ 6 -dimensional representation of Higgs. The estimated three-dimensional density parameter space of the lightest neutrino mass m 1 , δ CP , and reactor mixing angle θ 13 is constrained here for the requirement of producing the observed value of baryon asymmetry of the Universe through the mechanism of leptogenesis. Carrying out numerical analysis, the allowed parameter space of m 1 , δ CP , and θ 13 is found out which can produce the observed baryon to photon density ratio of the Universe.

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Reference38 articles.

1. Observation of Electron-Antineutrino Disappearance at Daya Bay

2. Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV

3. Neutrino experiments and the problem of conservation of leptonic charge;B. Pontecorvo;Soviet Physics JETP,1968

4. Model independent analysis of Dirac CP violating phases for some well known mixing scenarios;S. K. Garg,2018

5. Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2×1021 Protons on Target

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3