Effects of Cholecalciferol on Key Components of Vitamin D-Endo/Para/Autocrine System in Experimental Type 1 Diabetes

Author:

Mazanova Anna1ORCID,Shymanskyi Ihor1ORCID,Lisakovska Olha1,Hajiyeva Lala2,Komisarenko Yulia2,Veliky Mykola1

Affiliation:

1. Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

2. Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine

Abstract

Objectives.Recent prospective studies have found the associations between type 1 diabetes (T1D) and vitamin D deficiency. We investigated the role of vitamin D in the regulation of 25OHD-1α-hydroxylase (CYP27B1) and VDR expression in different tissues of T1D rats.Design.T1D was induced in male Wistar rats by streptozotocin (55 mg/k b.w.). After 2 weeks of T1D, the animals were treated orally with or without vitamin D3(cholecalciferol; 100 IU/rat, 30 days).Methods.Serum 25-hydroxyvitamin D (25OHD) was detected by ELISA. CYP27A1, CYP2R1, CYP27B1, and VDR were assayed by RT-qPCR and Western blotting or visualized by immunofluorescence staining.Results.We demonstrated that T1D led to a decrease in blood 25OHD, which is probably due to the established downregulation of CYP27A1 and CYP2R1 expression. Vitamin D deficiency was accompanied by elevated synthesis of renal CYP27B1 and VDR. Conversely, CYP27B1 and VDR expression decreased in the liver, bone tissue, and bone marrow. Cholecalciferol administration countered the impairments of the vitamin D-endo/para/autocrine system in the kidneys and extrarenal tissues of diabetic rats.Conclusions.T1D-induced vitamin D deficiency is associated with impairments of renal and extrarenal CYP27B1 and VDR expression. Cholecalciferol can be effective in the amelioration of diabetes-associated abnormalities in the vitamin D-endo/para/autocrine system.

Funder

National Academy of Sciences of Ukraine

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3