Assessment of Surface Runoff for Tank Watershed in Tamil Nadu Using Hydrologic Modeling

Author:

Abraham Marykutty1ORCID,Mathew Riya Ann2ORCID

Affiliation:

1. Sathyabama University, Chennai, India

2. Anna University, Chennai, India

Abstract

Providing safe and wholesome water in sufficient quantity on a sustainable basis remains elusive for large population especially in semiarid regions and hence water balance estimation is vital to assess water availability in a watershed. The water balance study is formulated to assess the runoff that can be harvested for effective utilization. The study area is Urapakkam watershed with a chain of 3 tanks having an aerial extent of 4.576 km2 with hard rock formation underneath and thus has limited scope for groundwater recharge. Hence surface water is the main water source in this area. Runoff computed for the watershed using USDA-NRCS model varied from 94.95 mm to 2324.34 mm and the corresponding rainfall varied from 575.7 mm to 3608.0 mm, respectively. A simple regression model was developed for the watershed to compute runoff from annual rainfall. Average annual runoff estimated for the watershed was around 37% of the rainfall for the study period from 2000-01 to 2013-14. Statistical analysis and test of significance for runoff obtained by NRCS model and regression model did not show any significant difference thus proving that regression model is efficient in runoff computation for ungauged basins. The volume of water accessible for fifty percent dependable flow year is obtained as 2.46 MCM and even if 50% of it can be effectively harnessed the water available in the watershed is 1.23 MCM. The water demand of the area is estimated as 0.148 MCM for domestic purpose and 0.171 MCM for irrigation purpose, which is much lower than the available runoff that can be harnessed from the watershed. Thus there is scope to harvest 1.23 MCM of water which is more than the demand of the watershed. The study reveals that it is feasible to harvest and manage water effectively if its availability and demand are computed accurately.

Publisher

Hindawi Limited

Subject

Geophysics,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3