Radial and Sigmoid Basis Function Neural Networks in Wireless Sensor Routing Topology Control in Underground Mine Rescue Operation Based on Particle Swarm Optimization

Author:

Ansong Mary Opokua12ORCID,Yao Hong-Xing13,Huang Jun Steed4

Affiliation:

1. Institute of System Engineering, Faculty of Science, Jiangsu University, 301 Xuefu, Zhenjiang 212013, China

2. Department of Computer Science, Faculty of Applied Science, Kumasi Polytechnic, P.O. Box 854, Kumasi, Ghana

3. College of Finance and Economics, Jiangsu University, 301 Xuefu, Zhenjiang 212013, China

4. Computer Science and Technology, School of Computer Science and Telecommunication, Jiangsu University, 301 Xuefu, Zhenjiang 212013, China

Abstract

The performance of a proposed compact radial basis function was compared with the sigmoid basis function and the gaussian-radial basis function neural networks in 3D wireless sensor routing topology control, in underground mine rescue operation. Optimised errors among other parameters were examined in addition to scalability and time efficiency. To make the routing path efficient in emergency situations, the sensor sequence and deployment as well as transmission range were carefully considered. In times of danger and unsafe situations, data-mule robot with Through The Earth (TTE) radio would be used to carry water, food, equipments, and so forth to miners underground and return with information. Using Matlab, the optimised vectors with high survival rate and fault tolerant, based on rock type, were generated as inputs for the neural networks. Particle swarm optimisation with adaptive mutation was used to train the neurons. Computer simulation results showed that the neural network learning algorithm minimized the error between the neural network output and the desired output such that final error values were either the same as the error goal or less than the error goal. Thus, the proposed algorithm shows high reliability and superior performance.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3