Optimizing Nitrogen Fertilization Regimes for Sustainable Maize (Zea mays L.) Production on the Volcanic Soils of Buea Cameroon

Author:

Ngosong Christopher1ORCID,Bongkisheri Victorine1,Tanyi Clovis B.1,Nanganoa Lawrence T.2ORCID,Tening Aaron S.1

Affiliation:

1. Department of Agronomic and Applied Molecular Sciences, Faculty of Agriculture and Veterinary Medicine, University of Buea, P.O. Box 63, Buea, South West Region, Cameroon

2. Institute of Agricultural Research for Development (IRAD) Ekona, P.O. Box 25, Buea, South West Region, Cameroon

Abstract

Nitrogen (N) fertilizer is commonly used to improve soil fertility and maize production in Cameroon, but high cost and potential environmental effects have necessitated site-specific N fertilization regimes that are adapted to particular soil and crop types. A field experiment was conducted with five N application rates (control–0, 50, 100, 150, and 200 kg N ha−1) to determine optimum rate for best maize yield with limited effect on soil acidification. The soil residual N ranged from 0.18 to 0.36% across N application rates and increased at higher application rates with the highest in 150 and 200 kg N ha−1. Soil C/N ratio ranged from 7.5 to 15.5 across N rates with the highest in control, which decreased at higher N application rates. Soil pH ranged from 4.7 to 5.4 across N rates, with the lowest in 200 kg N ha−1 rate. Maize grain yield and cob length ranged from 7.1 to 10.3 t ha−1 and from 14.5 to 18 cm across N rates, respectively, with the highest in 150 and 200 kg N ha−1. Maize 1000-grain weight ranged from 380 to 560 g across N application rates with the highest in 100, 150, and 200 kg N ha−1. Significant negative correlations occurred between soil pH and maize yield or 1000-grain weight. Maize N use efficiency decreased sharply at higher N application rates, as demonstrated by a strong negative correlation between the N-Partial Factor Productivity and total soil N. Overall, the lower soil pH at higher N application rates highlights the potential for deleterious effects of N fertilizer inputs on arable soils, which may eventually affect crop productivity, thereby suggesting lower N fertilization regimes between 50 and 100 kg N ha−1 as the optimum for maize production on the volcanic soils of Buea.

Funder

Ministry of Higher Education, Cameroon

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3