Collaborator: A Nonholonomic Multiagent Team for Tasks in a Dynamic Environment

Author:

Ren Jing1,Green Mark1

Affiliation:

1. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada L1G 7K4

Abstract

In our previous work, we proposed a potential field-based hybrid path planning scheme for robot navigation that achieves complete coverage in various tasks. This paper is an extension of this work producing a multiagent framework, Collaborator, that integrates a high-level negotiation-based task allocation protocol with a low-level path planning method taking into consideration several real-world robot limitations such as nonholonomic constraints. Specifically, the proposed framework focuses on a class of complex motion planning problems in which robots need to cover the whole workspace, coordinate the accomplishment of a task, and dynamically change their roles to best fit the task. Applications in this class of problems include bomb detection and removal as well as rescuing of survivors from accidents or disasters. We have tested the framework in simulations of several tasks and have shown that Collaborator can satisfy nonholonomic constraints, cooperatively accomplish given tasks in an initially unknown dynamic environment while avoiding collision with other team members. Finally we prove that the proposed control laws are stable using the Lyapunov stability theory.

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3