Division and Effect Evaluation of Fracking Outburst Elimination Zones in Surface Extraction Wells of Coalbed Methane

Author:

Liu JianbaoORCID,Song ZhiminORCID,Li BingORCID,Ren JiangangORCID,Zhang HongyanORCID,Cheng NuoORCID

Abstract

Surface hydraulic fracturing is an important measure for increasing reservoir permeability, which has advantages such as engineering safety and a large impact range and can be implemented ahead of the mine’s underground engineering. However, its underground outburst reduction range and effect are rarely reported, and there is a lack of connection with underground fracturing wells. Taking coalbed methane wells in the Lu’an Mining Area as an example, underground observation, microseismic monitoring, and numerical simulation methods were used to study the fracturing range and outburst control effect of surface wells. The fracturing zone of coalbed methane wells is approximately elliptical in shape, with the main fractures extending along the direction of the maximum horizontal principal stress. It can be divided into five zones: sand laying zone (radius of 140~150 m), fracture propagation zone (radius of about 180 m), fracturing fluid permeability zone (width of about 1 m), gas surge zone (width of 2~3 m), and final desorption zone (width of about 2 m). The stress around the fracturing zone increases along the direction of maximum and minimum principal stresses, while the stress value within the zone decreases, with a range of approximately 5~20% of the original geostress. The outburst reduction index Δh2 in the fracturing zone significantly decreased after fracturing. The percent of Δh2 (< 150 Pa) increased from 38.3% to 100% after fracturing. A model for evaluating the effectiveness of surface fracturing and outburst prevention was proposed, and the model was used in Tunliu Mine. The results showed that the standard‐reaching rate of extraction was high, and the danger of outburst could be completely eliminated. The research results can provide a reference for the arrangement of the coalbed methane wells and can also provide effective guidance for outburst prevention and control work during mining and excavation on a more macro scale. It provides a new idea and method for making up for the shortcomings such as the small impact range and safety hazards of underground fracturing.

Funder

Key Scientific Research Project of Colleges and Universities in Henan Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3