Intelligent Design of Tennis Player Training Schedule Based on Big Data of Complexity

Author:

Qiu Haiye1,Liu Chang2ORCID,Zhang Xiaomin3

Affiliation:

1. Physical Education Department, Shandong University (Weihai), Weihai 264200, Shandong, China

2. College of Competitive Sports, Beijing Sport University, Haidian, Beijing 100084, China

3. College of Engineering, Zhejiang Normal University, Jinhua 321000, Zhejiang, China

Abstract

Tennis players have more physical training content, and the training items are complex. For athletes, training programs that adapt to their individual characteristics should be formulated according to their physical characteristics. The current development of big data has brought about changes in thinking, management, and business models. The combination of complex systems and big data can also make breakthroughs in the sports field. Based on this, this article proposes a tennis player training schedule intelligent formulation system based on complex system big data. First of all, this article adopts the literature data method, comparative analysis method, experimental analysis method, etc., in-depth study of the concepts of big data, complex system, and the physical structure characteristics of tennis sports. This paper designs an intelligent system for making tennis players’ training schedule, which collects, transforms, and integrates tennis training data through the characteristics of big data. Then, the dynamic time regulation of tennis is performed through a complex system, and finally, the experimental system is analyzed. This article mainly analyzes the comparison of physical indicators between the experimental group and the control group before and after the experiment, the evaluation indicators of sports events, the strength training effects of tennis events, and the analysis of shoulder joint tests. There is no significant difference between the experimental group and the control group in the items before the experiment, P > 0.05 , which suggests that the physical fitness of the two groups of athletes is similar; in the posttest data, the experimental group and the control group have significant differences, P < 0.05 , indicating an effect from the experiment. In particular, in fan running, forward and backward strokes, and the serve, the scores of the experimental group were higher than those of the control group, indicating that the use of the formulated training system demonstrated significant results.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3