Cooperation-Based Modeling of Sustainable Development: An Approach from Filippov’s Systems

Author:

Amador Jorge A.1ORCID,Redondo Johan Manuel2ORCID,Olivar‐Tost Gerard3ORCID,Erazo Christian4ORCID

Affiliation:

1. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogota, DC, Colombia

2. Facultad de Ciencias Económicas y Administrativas, Universidad Católica de Colombia, Bogota, DC, Colombia

3. Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Aysen, Chile

4. Facultad de Ingeniería Mecánica, Electrónica y Biomédica, Universidad Antonio Nariño, Bogota, DC, Colombia

Abstract

The concept of Sustainable Development has given rise to multiple interpretations. In this article, it is proposed that Sustainable Development should be interpreted as the capacity of territory, community, or landscape to conserve the notion of well-being that its population has agreed upon. To see the implications of this interpretation, a Brander and Taylor model, to evaluate the implications that extractivist policies have over an isolated community and cooperating communities, is proposed. For an isolated community and through a bifurcation analysis in which the Hopf bifurcation and the heteroclinic cycle bifurcation are detected, 4 prospective scenarios are found, but only one is sustainable under different extraction policies. In the case of cooperation, the exchange between communities is considered by coupling two models such as the one defined for the isolated community, with the condition that their transfers of renewable resources involve conservation policies. Since human decisions do not occur in a continuum, but rather through jumps, the mathematical model of cooperation used is a Filippov System, in which the dynamics could involve two switching manifolds of codimension one and one switching manifold of codimension two. The exchange in the cooperation model, for specific parameter arrangements, exhibits n -periodic orbits and chaos. It is notable that, in the cases in which the system shows sliding, it could be interpreted as a recovery delay related to the time needed by the deficit community to recover, until its dependence on the other community stops. It is concluded (1) that a sustainability analysis depends on the way well-being is defined because every definition of well-being is not necessarily sustainable, (2) that sustainability can be visualized as invariant sets in the nonzero region of the space of states (equilibrium points, n -periodic orbits, and strange attractors), and (3) that exchange is key to the prevalence of the human being in time. The results question us on whether Sustainable Development is only to keep us alive or if it also implies doing it with dignity.

Funder

University Antonio Nariño

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference93 articles.

1. Limits to growth, a report for the club of Rome’s project on the predicament of mankind;D. Meadows,1972

2. Sustainability: principles and practice;R. K. Turner,1993

3. Landscape sustainability science: ecosystem services and human well-being in changing landscapes

4. Enter the triple bottom line;J. Elkington,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3