Modelling the Effects of Meteorological Factors on Maximum Rainfall Intensities Using Exponentiated Standardized Half Logistic Distribution

Author:

Sasanya B. F.1ORCID,Awodutire P. O.2ORCID,Ufuoma O. G.2ORCID,Balogun O. S.3ORCID

Affiliation:

1. Department Crop and of Soil Sciences, University of Port Harcourt, Port Harcourt, Nigeria

2. Department of Mathematics and Computer Sciences, University of Africa, Toru Orua, Nigeria

3. School of Computing, University of Eastern Finland, Finland

Abstract

Rainfall intensity prediction or forecast is vital in designing hydraulic structures and flood and erosion control structures. In this work, meteorological data were obtained from the National Aeronautics and Space Administration’s (NASA) website. Models estimating maximum rainfall intensities were derived, and some meteorological factors’ effects on the models were tested. The meteorological factors considered include annual relative humidity averages, specific humidity, temperature range at 2 m, maximum temperature, and minimum temperature. This research was aimed at developing a model for estimating maximum rainfall intensities, and the effects of various meteorological factors on the models were investigated. The exponentiated standardized half logistic distribution (ESLD) was used to model the effects of the factors and return periods on 35 years’ (1984–2018) annual maxima monthly rainfall intensities for Port Harcourt metropolis, Nigeria. The model parameters were estimated using the maximum likelihood estimation method. Compared with the results from the five standard distributions, three criteria were used to determine the best-performed distribution. These indicated that the ESLD performed considerably better than the other five compared distributions. Only the return period had significant effects on the model for the rainfall intensity prediction since p < 0.05 , while the effects of the meteorological factors are insignificant.

Funder

Digiteknologian TKI-ymparisto project

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3