Verification of Classification Model and Dendritic Neuron Model Based on Machine Learning

Author:

Jia Dongbao12ORCID,Xu Weixiang1,Liu Dengzhi1ORCID,Xu Zhongxun1,Zhong Zhaoman1ORCID,Ban Xinxin3ORCID

Affiliation:

1. School of Computer Engineering, Jiangsu Ocean University, Lianyungang 222005, China

2. The MOE Key Laboratory of TianQin Project, Sun Yat-Sen University, Zhuhai 519082, China

3. School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

Artificial neural networks have achieved a great success in simulating the information processing mechanism and process of neuron supervised learning, such as classification. However, traditional artificial neurons still have many problems such as slow and difficult training. This paper proposes a new dendrite neuron model (DNM), which combines metaheuristic algorithm and dendrite neuron model effectively. Eight learning algorithms including traditional backpropagation, classic evolutionary algorithms such as biogeography-based optimization, particle swarm optimization, genetic algorithm, population-based incremental learning, competitive swarm optimization, differential evolution, and state-of-the-art jSO algorithm are used for training of dendritic neuron model. The optimal combination of user-defined parameters of model has been systemically investigated, and four different datasets involving classification problem are investigated using proposed DNM. Compared with common machine learning methods such as decision tree, support vector machine, k-nearest neighbor, and artificial neural networks, dendritic neuron model trained by biogeography-based optimization has significant advantages. It has the characteristics of simple structure and low cost and can be used as a neuron model to solve practical problems with a high precision.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3