Raman Spectroscopy-Assisted Characterization of Nanoform MoS2 Thin Film Transistor

Author:

Saminathan Rajasekaran1ORCID,Hadidi Haitham1,Tharwan Mohammed1ORCID,Alnujaie Ali1,Khamaj Jabril A.1,Venugopal Gunasekaran2ORCID

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, Jazan University, P. O. Box 45142, Jazan, Saudi Arabia

2. Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur, 610005 Tamil Nadu, India

Abstract

In this paper, we report the simple preparation and investigation of electrical transport properties of nanoform MoS2 thin film transistor (TFT) devices. MoS2 nanoparticles were synthesized by using the hydrothermal method. The physiochemical characterizations such as UV-vis, Fourier transform infrared, X-ray diffraction, and Raman spectroscopy studies were performed. Spin-coating was used to make the thin film on which silver electrodes were made. We observed nonlinear current-voltage (I-V) characteristics; however, the symmetricity was found in the I-V curve which confirms the no formation of the Schottky barrier between thin film and electrodes. Transistor transfer characteristics reveal that the TFT device is n-doped as more drain current modulation is observed when the positive gate voltage is applied. The relationship between gate-current and gate voltage studies concludes that there is no leakage gate current in the TFT device which further confirms the good reliability of transfer characteristics of a device. The device mobility was calculated as ~10.2 cm2/Vs, and the same was explained with plausible reason supported with Raman spectra analysis.

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3