Gram-Scale Synthesis of Pt-Cu Nanowires with Enhanced Electrocatalytic Activity towards Methanol Oxidation Reaction

Author:

Sui Ning1,Gao Hongxu1,Wang Yukai1,Li Jiali1,Qu Shiyu1,Bai Qiang1,Xiao Hailian1,Sui Jing1,Liu Manhong1ORCID,Yu William W.12ORCID

Affiliation:

1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

2. Department of Chemistry and Physics, Louisiana State University Shreveport, LA 71115, USA

Abstract

A facile method to prepare Pt-Cu nanowires (NWs) was introduced. Structural characterization such as high-resolution transmission electron microscope (HR-TEM), selected-area electron diffraction (SAED), EDS element mapping, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and inductively coupled plasma mass spectrometry (ICP-MS) showed the formation of Pt-Cu alloy, with a width of 4.5 nm on average. The formation process of Pt-Cu NWs was studied; it was found that bromine ion, who has preferential adsorption on Pt (100) face, served as a growth-directing agent; Brij58 not only served as a protector but also played an important role in forming Pt-Cu NWs; the mechanism was proposed. Their electrocatalytic activity towards methanol oxidation was investigated; we found that the current density of Pt-Cu NWs was 295 mA·mg-1 when the ratio of Pt/Cu is 1 : 1, which is 11.5 and 2.35 times higher than that of pure Pt (26 mA·mg-1) and commercial Pt/C (126 mA·mg-1). The high electrocatalytic activity is attributed to the presence of abundant structural defects and surface active sites on the synthesized Pt-Cu NWs.

Funder

Qingdao University of Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3