An Analysis of Image Classification Using Wavelet‐Based Autoencoder Architecture and Extreme Learning Machine

Author:

Said SalwaORCID,Hassairi SalimaORCID,Yahia SiwarORCID,Ejbali RidhaORCID,Zaied MouradORCID

Abstract

In recent machine learning applications, promising outcomes have emerged through the integration of Deep Learning (DL) and Extreme Learning Machine (ELM) techniques with wavelet networks (WN), leading to high classification accuracy. Researchers have explored various strategies to enhance classifier performance. Among these methods, Deep Wavelet Autoencoders (AE) and the Deep Wavelet ELM algorithm have been extensively applied in diverse image classification domains. This research paper conducts a comparative analysis between these two wavelet AE‐based techniques. The first approach involves the development of a Deep Stacked Sparse Wavelet Autoencoder (DSSWAE), while the second method focuses on creating a Deep Wavelet ELM Autoencoder (DW‐ELM‐AE). To enable a comprehensive comparison, experiments were conducted using different datasets, specifically MNIST and COIL‐20. The results clearly demonstrate that the Deep Stacked Wavelet AE (DSWAE) and DSSWAE algorithms outperform the State‐of‐the‐Art (SOTA) techniques in terms of accuracy efficiency, emphasizing their significant potential for a wide range of image classification applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3