A Time-Dependent Fuzzy Programming Approach for the Green Multimodal Routing Problem with Rail Service Capacity Uncertainty and Road Traffic Congestion

Author:

Sun Yan1ORCID,Hrušovský Martin2,Zhang Chen3ORCID,Lang Maoxiang4ORCID

Affiliation:

1. School of Management Science and Engineering, Shandong University of Finance and Economics, No. 7366, Second Ring East Road, Jinan, Shandong Province 250014, China

2. Institute for Production Management, WU Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

3. Unit of Logistics and Informatics, KTH Royal Institute of Technology, Tekniringen 10, 10044 Stockholm, Sweden

4. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

Abstract

This study explores an operational-level container routing problem in the road-rail multimodal service network. In response to the demand for an environmentally friendly transportation, we extend the problem into a green version by using both emission charging method and bi-objective optimization to optimize the CO2 emissions in the routing. Two uncertain factors, including capacity uncertainty of rail services and travel time uncertainty of road services, are formulated in order to improve the reliability of the routes. By using the triangular fuzzy numbers and time-dependent travel time to separately model the capacity uncertainty and travel time uncertainty, we establish a fuzzy chance-constrained mixed integer nonlinear programming model. A linearization-based exact solution strategy is designed, so that the problem can be effectively solved by any exact solution algorithm on any mathematical programming software. An empirical case is presented to demonstrate the feasibility of the proposed methods. In the case discussion, sensitivity analysis and bi-objective optimization analysis are used to find that the bi-objective optimization method is more effective than the emission charging method in lowering the CO2 emissions for the given case. Then, we combine sensitivity analysis and fuzzy simulation to identify the best confidence value in the fuzzy chance constraint. All the discussion will help decision makers to better organize the green multimodal transportation.

Funder

Shandong Provincial Social Science Planning of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3