A Study on Seismic Isolation of Shield Tunnel Using Quasi-Static Finite Element Method

Author:

Li Can123ORCID,Chen Weizhong1ORCID,Zhao Wusheng1ORCID,Suzuki Takeyasu45ORCID,Shishikura Yoshihiro3

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Graduate School of Engineering, Civil and Environment Engineering Course, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

4. Graduate School of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

5. Disaster and Sustainable Administration Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

Abstract

Using a quasi-static method based on an axisymmetric finite element model for seismic response analysis of seismically isolated tunnels, the seismic isolation effect of the isolation layer is studied, and the seismic isolation mechanism of the isolation layer is clarified. The results show that, along the longitudinal direction of the tunnel, the seismic isolation effect is mainly affected by the shear modulus of the isolation material. The smaller the shear modulus is, the more evident the seismic isolation effect is. This is due to the tunnel being isolated from deformation of its peripheral ground through shear deformation of the isolation layer. However, along the transverse direction of the tunnel, the seismic isolation effect is mainly affected by the shear modulus and Poisson’s ratio of the isolation material. When Poisson’s ratio is close to 0.5, a seismic isolation effect is not evident because the tunnel cannot be isolated from deformation of its peripheral ground through compression deformation of the isolation layer. Finally, a seismic isolation system comprising a shield tunnel in which flexible segments are arranged at both ends of an isolation layer is proposed, and it is proved that the seismic isolation system has significant seismic isolation effects both on the longitudinal direction and on the transverse direction.

Funder

National Program on Key Basic Research Project of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3