Optimal Day-Ahead Bidding Strategy for Electricity Retailer with Inner-Outer 2-Layer Model System Based on Stochastic Mixed-Integer Optimization

Author:

Wang Yuwei1ORCID,Wang Jingmin1,Sun Wei1,Zhao Mingrui2

Affiliation:

1. Department of Economic Management, North China Electric Power University, Baoding 071003, China

2. CEC Electric Power Development Research Institute, Beijing 100053, China

Abstract

Bidding in spot electricity market (EM) is a key source for electricity retailer (ER)’s power purchasing. In China for the near future, besides the real-time load and spot clearing prices uncertainties, it will be hard for a newborn ER to adjust its retail prices at will due to the strict governmental supervision. Hence, spot EM bidding decision-making is a very complicated and important issue for ER in many countries including China. In this paper, an inner-outer 2-layer model system based on stochastic mixed-integer optimization is proposed for ER’s day-ahead EM bidding decision-making. This model system not only can help to make ERs more beneficial under China’s EM circumstances in the near future, but also can be applied for improving their profits under many other deregulated EM circumstances (e.g., PJM and Nord Pool) if slight transformation is implemented. Different from many existing researches, we pursue optimizing both the number of blocks in ER’s day-ahead piecewise staircase (energy-price) bidding curves and the bidding price of every block. Specifically, the inner layer of this system is in fact a stochastic mixed-integer optimization model, by which the bidding prices are optimized by parameterizing the number of blocks in bidding curves. The outer layer of this system implicitly possesses the characteristics of heuristic optimization in discrete space, by which the number of blocks is optimized by parameterizing bidding prices in bidding curves. Moreover, in order to maintain relatively low financial-risk brought by clearing prices and real-time load uncertainties, we introduce the conditional value at risk (CVaR) of profit in the objective function of inner layer model in addition to the expected profit. Simulations based on historical data have not only tested the scientificity and feasibility of our model system, but also verified that our model system can further improve the actual profit of ER compared to other methods.

Funder

Major State Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3