Emergency Department Capacity Planning: A Recurrent Neural Network and Simulation Approach

Author:

Nas Serkan1,Koyuncu Melik1ORCID

Affiliation:

1. Department of Industrial Engineering, Çukurova University, Sarıçam 01330, Turkey

Abstract

Emergency departments (EDs) play a vital role in the whole healthcare system as they are the first point of care in hospitals for urgent and critically ill patients. Therefore, effective management of hospital’s ED is crucial in improving the quality of the healthcare service. The effectiveness depends on how efficiently the hospital resources are used, particularly under budget constraints. Simulation modeling is one of the best methods to optimize resources and needs inputs such as patients’ arrival time, patient’s length of stay (LOS), and the route of patients in the ED. This study develops a simulation model to determine the optimum number of beds in an ED by minimizing the patients’ LOS. The hospital data are analyzed, and patients’ LOS and the route of patients in the ED are determined. To determine patients’ arrival times, the features associated with patients’ arrivals at ED are identified. Mean arrival rate is used as a feature in addition to climatic and temporal variables. The exhaustive feature-selection method has been used to determine the best subset of the features, and the mean arrival rate is determined as one of the most significant features. This study is executed using the one-year ED arrival data together with five-year (43.824 study hours) ED arrival data to improve the accuracy of predictions. Furthermore, ten different machine learning (ML) algorithms are used utilizing the same best subset of these features. After a tenfold cross-validation experiment, based on mean absolute percentage error (MAPE), the stateful long short-term memory (LSTM) model performed better than other models with an accuracy of 47%, followed by the decision tree and random forest methods. Using the simulation method, the LOS has been minimized by 7% and the number of beds at the ED has been optimized.

Funder

Çukurova University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3