An Investigation on Speed Control of a Spindle Cluster Driven by Hydraulic Motor: Application to Metal Cutting Machines

Author:

Tran Ngoc Hai1,Le Cung1ORCID,Ngo Anh Dung2

Affiliation:

1. University of Science and Technology, University of Danang, Vietnam

2. École de Technologie Supérieure (ÉTS), Canada

Abstract

In this article, we present an experimental study on the speed stability of a spindle driven by a hydraulic motor, which is controlled by a proportional valve, through a V-belt transmission. The research includes the dynamic modeling of the transmission cluster and the transmission from the hydraulic motor to the working shaft via V-belt mechanism, together with the establishment of a mathematical model and fuzzy self-tuning PID controller model. In the model, the V-belt is assumed as an elastic module, and the friction coefficient and mass inertia moment of the hydraulic motor are considered as constant. The Matlab software is used to simulate the speed response of the hydraulic motor to the working shaft. Based on theoretical study, we resemble the experimental system and determine the parameters for the fuzzy self-tuning PID controller. We conduct experiment and investigate the speed stability of the working shaft from 300 to 1100 (rpm) based on transient response parameters such as the time delay, the setting time, the overshoot, and the rotation error at steady state. Thereby, in this study, the simulation and the experiment results are compared and evaluated regarding the speed stability of the working shaft driven by hydraulic motor transmitted through V-belt mechanism. The findings show the speed controllability by using proportional valve to manipulate the oil flow and applying a self-tuning PID controller to achieve very good results such as the error difference of 0.001 to 0.036%, the delay of 0.01 to 0.02 seconds, no overshoot, and the settling error less than 5% compared to the set values. On the other hand, we include the effect of the oil temperature of 40 to 80°C on the working shaft speed (500, 900 rpm) in this study and derive that the system works well at temperature range of 40 to 70°C. On these findings, we propose the applicability of this system on the current machinery cutters. In addition, we verify the effects of the hydraulic drive for main shaft, controlled by fuzzy PID, by comparison of the roughness of the machining work piece with respect to the one using the 3-phase motor drive.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3