Dynamic Characteristics and Restraint Mechanism of Elastically Restrained Connecting Joints on the Flexible Robotic Manipulator

Author:

Liu Yufei12ORCID,Xu Han3ORCID,Zhang Xi1ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China

2. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. Tongji Zhejiang College, Jiaxing 314000, China

Abstract

Connecting joints are significant components in mechanical systems as well as the Cartesian flexible robotic manipulator (FRM) which consists of a flexible arm and a moving base through connecting joints. Uncertain factors, such as unqualified assembly, accidental collision, and longtime service, will reduce the restraint stiffness of the connecting joints and enhance the dynamic nonlinearity of the system subsequently. In this case, the traditional perfectly fixed restrained model cannot reflect the real property of the connecting joints. This paper focuses on the elasticity property of the connecting joints with uncertain restraint stiffness, which is defined as the elastically restrained connecting joints (ERCJ), and investigates the dynamic characteristics and restraint mechanism of the ERCJ. An elastic restrained model is proposed to describe the elasticity property of the connecting joints and determine the elastic restrained region of the ERCJ, and the frequency relationship equation in the elastic restrained region is simultaneously determined and verified. Based on the proposed elastic restrained model and Hamilton’s variational principle, the dynamic model and vibration displacement equation of the FRM with elastically restrained connecting joints (FRMERCJ) are established. The virtual prototype experiment of the FRMERCJ is conducted to verify the dynamic model and reveal the restraint mechanism of the ERCJ. The proposed elastic restrained model in this paper can accurately describe the elasticity property of the connecting joints, and the ERCJ is sensitive to motion velocities especially under higher velocities for higher-order vibrations in the initial stage. The results are meaningful for the dynamic analysis and vibration control of robotic manipulators.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3