Affiliation:
1. Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University, Nanjing, China
2. School of Automation, Southeast University, Nanjing, China
Abstract
Nonlinear time-varying systems without mechanism models are common in application. They cannot be controlled directly by the traditional control methods based on precise mathematical models. Intelligent control is unsuitable for real-time control due to its computation complexity. For that sake, a multidimensional Taylor network (MTN) based output tracking control scheme, which consists of two MTNs, one as an identifier and the other as a controller, is proposed for SISO nonlinear time-varying discrete-time systems with no mechanism models. A MTN identifier is constructed to build the offline model of the system, and a set of initial parameters for online learning of the identifier is obtained. Then, an ideal output signal is selected relative to the given reference signal. Based on the system identification model, Pontryagin minimum principle is introduced to obtain the numerical solution of the optimal control law for the system relative to the given ideal output signal, with the corresponding optimal output taken as the desired output signal. A MTN controller is generated automatically to fit the numerical solution of the optimal control law using the conjugate gradient (CG) method, and a set of initial parameters for online learning of the controller is obtained. An adaptive back propagation (BP) algorithm is developed to adjust the parameters of the identifier and controller in real time, and the convergence for the proposed learning algorithm is verified. Simulation results show that the proposed scheme is valid.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献