Affiliation:
1. King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
2. Nippon Institute of Technology, Saitama 345-8501, Japan
Abstract
Pure DLC, Si-DLC, and Si-N-DLC films deposited from C2H2, C2H2 : TMS and C2H2 : TMS : N2 mixtures were used to study the effects of the elemental contents (silicon, silicon-nitrogen) on deposition and corrosion resistance properties. The films were prepared on Si (100) wafers using the plasma-based ion implantation (PBII) technique. The film structure was analyzed using Raman spectroscopy. The composition at the top surface of the films was measured using energy dispersive X-ray spectroscopy (EDS). The hardness and elastic modulus of the films were measured using a nanoindentation hardness tester. The corrosion performance of the films was conducted using potentiodynamic polarization experiments in an aqueous 0.05 M NaCl solution. The results indicate that the hardness and corrosion resistance of the Si-DLC film increase as the silicon content increases. This is due to the increase of the sp3 cluster. The corrosion resistance of a pure DLC film increases when silicon and silicon-nitrogen are doped into the film. Si-DLC films with a silicon content of 40 at.% had a corrosion potential value of 0.61 V, while a Si-N-DLC film with a silicon and nitrogen content of 19.3 at.% and 1 at.% shows a corrosion potential value of 0.85 V, which is a considerable improvement in the corrosion resistance property.
Funder
King Mongkut’s University of Technology Thonburi
Subject
General Engineering,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献