Effect of Grain Size and Film Thickness on the Thermoelectric Properties of Flexible Sb2Te3 Thin Films

Author:

Wanarattikan Pornsiri1,Jitthammapirom Piya2,Sakdanuphab Rachsak2,Sakulkalavek Aparporn3ORCID

Affiliation:

1. Faculty of Science and Technology, Huachiew Chalermprakiet University, Samut Prakarn 10540, Thailand

2. College of Advanced Manufacturing Innovation, King Mongkut’s Institute of Technology Ladkrabang, Chalongksrung Rd., Ladkrabang, Bangkok 10520, Thailand

3. Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand

Abstract

In this work, stoichiometric Sb2Te3 thin films with various thicknesses were deposited on a flexible substrate using RF magnetron sputtering. The grain size and thickness effects on the thermoelectric properties, such as the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and thermal conductivity (k), were investigated. The results show that the grain size was directly related to film thickness. As the film thickness increased, the grain size also increased. The Seebeck coefficient and electrical conductivity corresponded to the grain size of the films. The mean free path of carriers increases as the grain size increases, resulting in a decrease in the Seebeck coefficient and increase in electrical conductivity. Electrical conductivity strongly affects the temperature dependence of PF which results in the highest value of 7.5 × 10−4 W/m·K2 at 250°C for film thickness thicker than 1 µm. In the thermal conductivity mechanism, film thickness affects the dominance of phonons or carriers. For film thicknesses less than 1 µm, the behaviour of the phonons is dominant, while both are dominant for film thicknesses greater than 1 µm. Control of the grain size and film thickness is thus critical for controlling the performance of Sb2Te3 thin films.

Funder

King Mongkut's Institute of Technology Ladkrabang

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3