A Multiple-Classifier Framework for Parkinson’s Disease Detection Based on Various Vocal Tests

Author:

Behroozi Mahnaz1,Sami Ashkan1

Affiliation:

1. Department of CSE and IT, School of Electrical Engineering and Computer Science, Shiraz University, Shiraz 71348-51154, Iran

Abstract

Recently, speech pattern analysis applications in building predictive telediagnosis and telemonitoring models for diagnosing Parkinson’s disease (PD) have attracted many researchers. For this purpose, several datasets of voice samples exist; the UCI dataset named “Parkinson Speech Dataset with Multiple Types of Sound Recordings” has a variety of vocal tests, which include sustained vowels, words, numbers, and short sentences compiled from a set of speaking exercises for healthy and people with Parkinson’s disease (PWP). Some researchers claim that summarizing the multiple recordings of each subject with the central tendency and dispersion metrics is an efficient strategy in building a predictive model for PD. However, they have overlooked the point that a PD patient may show more difficulty in pronouncing certain terms than the other terms. Thus, summarizing the vocal tests may lead into loss of valuable information. In order to address this issue, the classification setting must takewhathas been said into account. As a solution, we introduced a new framework that applies an independent classifier for each vocal test. The final classification result would be a majority vote from all of the classifiers. When our methodology comes with filter-based feature selection, it enhances classification accuracy up to15%.

Publisher

Hindawi Limited

Subject

Health Information Management,Computer Networks and Communications,Health Informatics,Medicine (miscellaneous)

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3