A Short-Time Non-Gaussian Probability Approximation Based Method for Response Transitions of a Lévy-Driven Nonsmooth System

Author:

Li Zigang1ORCID,Yan Wang2,Kang Jiaqi1,Li Ming1

Affiliation:

1. Department of Mechanics, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China

2. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China

Abstract

This paper proposes an efficient short-time probability approximation with Lévy excitation to capture the transient probability distribution and its evolving path. Using principal component analysis (PCA), the method constructs a probability core to exclude outliers beyond it. The statistics of samples that fall inside the core are treated, with a prescribed fiducial probability, as an easy-to-estimate Gaussian type. The idea is verified numerically by compared with Monte-Carlo results. Then, it is integrated into the path integral (PI) method, combined with evolving probabilistic vector (EPV) techniques, to efficiently obtain probability distributions in each time step of PI. This scheme is semianalytical, only dependent on a relatively small amount of response samples to form the probability core; thus, it can have very computational advantages over full Monte-Carlo simulation to capture transient responses and probability distributions. The application to investigating response transitions of a nonsmooth system driven by Lévy shock and jump has revealed the performance of the proposed method. Also, the exit times of stochastic response are characterized quantitatively from the perspective of global dynamic transition. These investigations will be helpful to achieve the efficient probability estimation for nonlinear system with non-Gaussian inputs and quantify the reliability of the mechanical system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3