Urban Traffic Noise Maps under 3D Complex Building Environments on a Supercomputer

Author:

Cai Ming123ORCID,Yao Yifan123ORCID,Wang Haibo1234ORCID

Affiliation:

1. School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China

2. Guangdong Provincial Key Laboratory of Intelligent Transportation System, Guangzhou, China

3. Guangdong Provincial Engineering Research Center for Traffic Environmental Monitoring and Control, Guangzhou, China

4. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, China

Abstract

The complexity of the 3D buildings and road networks gives the simulation of urban noise difficulty and significance. To solve the problem of computing complexity, a systematic methodology for computing urban traffic noise maps under 3D complex building environments is presented on a supercomputer. A parallel algorithm focused on controlling the compute nodes of the supercomputer is designed. Moreover, a rendering method is provided to visualize the noise map. In addition, a strategy for obtaining a real-time dynamic noise map is elaborated. Two efficiency experiments are implemented. One experiment involves comparing the expansibility of the parallel algorithm with various numbers of compute nodes and various computing scales to determine the expansibility. With an increase in the number of compute nodes, the computing time increases linearly, and an increased computing scale leads to computing efficiency increases. The other experiment is a comparison of the computing speed between a supercomputer and a normal computer; the computing node of Tianhe-2 is found to be six times faster than that of a normal computer. Finally, the traffic noise suppression effect of buildings is analyzed. It is found that the building groups have obvious shielding effect on traffic noise.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3