A Hybrid Process Monitoring and Fault Diagnosis Approach for Chemical Plants

Author:

Guo Lijie1,Kang Jianxin1

Affiliation:

1. Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China

Abstract

Given their potentially enormous risk, process monitoring and fault diagnosis for chemical plants have recently been the focus of many studies. Based on hazard and operability (HAZOP) analysis, kernel principal component analysis (KPCA), wavelet neural network (WNN), and fault tree analysis (FTA), a hybrid process monitoring and fault diagnosis approach is proposed in this study. HAZOP analysis helps identify the fault modes and determine process variables monitored. The KPCA model is then constructed to reduce monitoring variable dimensionality. Meanwhile, the fault features of the monitoring variables are extracted, so then process monitoring can be performed with the squared prediction error (SPE) statistics of KPCA. Then, multiple WNN models are designed through the use of low-dimensional sample data preprocessed by KPCA as the training and test samples to detect the fault mode online. Finally, FTA approach is introduced to further locate the fault root causes of the fault mode. The proposed approach is applied to process monitoring and fault diagnosis in a depropanizer unit. Case study results indicate that this approach can be applicable to process monitoring and diagnosis in large-scale chemical plants. Accordingly, the approach can serve as an early and reliable basis for technicians’ and operators’ safety management decision-making.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multivariable process monitoring for HAZOP;A New Approach to HAZOP of Complex Chemical Processes;2023

2. Application of multivariable process monitoring techniques to HAZOP studies of complex processes;Journal of Loss Prevention in the Process Industries;2022-01

3. Reaction kinetic of fine Fe2O3 particles assisted by magnetic field in a fluidized bed reactor;Chemical Engineering and Processing - Process Intensification;2021-08

4. Application of Artificial Neural Networks to Chemical and Process Engineering;Deep Learning Applications;2021-07-14

5. Exergy-based fault detection on the Tennessee Eastman process;IFAC-PapersOnLine;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3