Affiliation:
1. Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
Abstract
Given their potentially enormous risk, process monitoring and fault diagnosis for chemical plants have recently been the focus of many studies. Based on hazard and operability (HAZOP) analysis, kernel principal component analysis (KPCA), wavelet neural network (WNN), and fault tree analysis (FTA), a hybrid process monitoring and fault diagnosis approach is proposed in this study. HAZOP analysis helps identify the fault modes and determine process variables monitored. The KPCA model is then constructed to reduce monitoring variable dimensionality. Meanwhile, the fault features of the monitoring variables are extracted, so then process monitoring can be performed with the squared prediction error (SPE) statistics of KPCA. Then, multiple WNN models are designed through the use of low-dimensional sample data preprocessed by KPCA as the training and test samples to detect the fault mode online. Finally, FTA approach is introduced to further locate the fault root causes of the fault mode. The proposed approach is applied to process monitoring and fault diagnosis in a depropanizer unit. Case study results indicate that this approach can be applicable to process monitoring and diagnosis in large-scale chemical plants. Accordingly, the approach can serve as an early and reliable basis for technicians’ and operators’ safety management decision-making.
Funder
National Natural Science Foundation of China
Subject
General Chemical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献