Application of Computer Technology in Optimal Design of Overall Structure of Special Machinery

Author:

Guo Caiping1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiaozuo University, Jiaozuo 454003, Henan, China

Abstract

With the transformation and upgrading of my country’s industrial structure, the level of manufacturing automation has gradually improved. According to research, the design of mechanical products is mostly completed by improvement or innovation on the basis of existing design knowledge. Knowledge reuse is a technique to ensure the maximization of design resource utilization by reusing design knowledge. This article applies knowledge reuse technology to the development and design of mechanical products. By integrating the technical logic of the functional analysis system with the development of quality functions, the transformation of customer demand information and product function design is realized, and the task of the product design plan analysis phase is completed. This paper uses the finite element analysis software ANSYS to explore a new nonlinear finite element modeling method and conducts simulation experiments. At the same time, this paper improves the genetic algorithm, which effectively improves the optimization efficiency and completes the parameter optimization under multiobjective and multistructure conditions. From the experimental results, it takes 328.64 seconds for the basic genetic algorithm to search for the optimal solution of the complex problem. The improved time is shortened to 86.31 seconds, and the efficiency is increased by 73.74%. This shows that the improved genetic algorithm has better robustness and can find the optimal solution in a shorter calculation time. For complex problems such as the optimization of the overall structure of special machinery, the improved genetic algorithm obviously helps to improve the optimization efficiency and improves the effectiveness and pertinence of product design schemes.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference26 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3