Secure OFDM-Based NOMA for Machine-to-Machine Communication

Author:

Rahman Shafiq U.1ORCID,Sultan Amber1ORCID,Alroobaea Roobaea2ORCID,Talha Muhammad3ORCID,Hussain Syed B.1ORCID,Raza Muhammad A.4ORCID

Affiliation:

1. Department of Electronics and Electrical Systems, The University of Lahore, Pakistan

2. Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia

3. Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia

4. Department of Information Technology, Bahauddin Zakariya University, Multan 60000, Pakistan

Abstract

Machine-to-machine communication (M2M) has obtained increasing interest in recent years. However, its enhancement and broadcasting characteristics produced a new security challenge. We have suggested a novel dynamic Quadrature Amplitude Modulation (QAM) scheme for a totally elastic and dynamic mapping of user data by using chaos. This paper analyses physical layer security methods in Orthogonal Frequency Division Multiplexing-based Nonorthogonal Multiple Access (OFDM-NOMA) and introduces a secure data transmission mechanism created by dynamic QAM. The security robustness given by the suggested encryption scheme is assessed, where an overall keyspace of ~ 10 163 is achieved, which is sufficient to provide security against exhaustive attacks. The result of the scheme is verified through MATLAB simulation, where the bit error rate performance of our proposed scheme is compared with an unencrypted OFDM signal, and the performance of our proposed scheme is analyzed for an illegal user. The suggested dynamic mapping fulfills the fundamental obligations of cryptography for data security. Moreover, it enhances the level of security in OFDM-NOMA.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3