Hyperbaric Oxygen Improves Cerebral Ischemia/Reperfusion Injury in Rats Probably via Inhibition of Autophagy Triggered by the Downregulation of Hypoxia-Inducing Factor-1 Alpha

Author:

Wang Cuiting12,Niu Feng3,Ren Ningna4,Wang Xiaokun12,Zhong Hequan12,Zhu Jie3ORCID,Li Bing12ORCID

Affiliation:

1. Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China

2. The Institute of Neurology, The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China

3. Department of Rehabilitation, Jinshan Hospital, Fudan University, Shanghai 201508, China

4. College of Acupuncture-Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, 650500, China

Abstract

Ischemic stroke, accompanied with high mortality and morbidity, may produce heavy economic burden to societies and families. Therefore, it is of great significance to explore effective therapies. Hyperbaric oxygen (HBO) is a noninvasive, nondrug treatment method that has been proved able to save ischemic penumbra by improving hypoxia, microcirculation, and metabolism and applied in various ischemic diseases. Herewith, we fully evaluated the effect of HBO on ischemic stroke and investigated its potential mechanism in the rat ischemia/reperfusion(I/R) model. Sixty Sprague-Dawley male rats were randomly divided into three groups—sham group, MCAO group, and MCAO+HBO group. In the latter two groups, the middle cerebral artery occlusion was performed (MCAO) for 2 hours, and then the occlusion was removed in order to establish the ischemic/reperfusion model. Subsequently, HBO was performed immediately after I/R (2 hours per day for 3 days). 72 hours after MCAO, the brain was dissected for our experiment. Finally, the data from three groups were analyzed by one-way analysis of variance (ANOVA) and followed by a Bonferroni test. In this article, we reported that HBO effectively reduced the infarction and edema and improved neurological functions to a certain extent. As shown by western blot analysis, HBO significantly reduced autophagy by regulating autophagy-related proteins (mTOR, p-mTOR, Atg13, LC3B II and LC3B II) in the hippocampus 72 hours after I/R, which was accompanied by inhibiting the expression of hypoxia inducible factor-1α (HIF-1α) in hippocampus. The results suggest that HBO may improve cerebral I/R injury, possibly via inhibiting HIF-1α, the upstream molecule of autophagy, and therefore, subsequently inhibiting autophagy in the rat model of ischemic stroke.

Funder

Committee of Science and Technology of Jinshan

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3