Affiliation:
1. University of Electronic Science and Technology, China
2. Fluid Minerals Interactions, Australia
Abstract
This work presents a novel algorithm that achieves enhanced resolution of well logging signals, e.g., from 1 ft of a pulsed neutron mineralogy tool to 0.04 ft of an imaging tool. The algorithm, denoted as “Digital Core,” combines mineralogical and sedimentological information to generate a high-resolution record of the formation mineralogy which can be consequently applied to thin bedded environments. The keystone to the philosophy of this algorithm is that the spectral information recorded by mineralogy tool is a weighted average of the mineralogy of each lithological component in the analyzed volume. Therefore, by using a high-resolution image log to determine the proportion of each lithological component, their composition can be determined from the mineralogy log data. A field case from a well located in South Australia is presented in this work, and the results validate the feasibility of an integrated core-level petrophysical analysis in a cost-effective and timely manner compared to conventional core measurements.
Funder
University of Electronic Science and Technology of China
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献