An Axial Foilless Diode Guided by Composite Magnetic Field for the Production of Relativistic Electron Beams

Author:

Li Chunxia1ORCID,Jin Xiao1ORCID,Wang Ganping1ORCID,Zhang Beizhen1ORCID,Gong Haitao1ORCID,Gan Yanqing1ORCID,Li Fei1ORCID,Song Falun1ORCID

Affiliation:

1. Science and Technology on High Power Microwave Laboratory, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China

Abstract

Foilless diode are widely used in high-power microwave devices, but the traditional foilless diodes have large volume, heavy weight, and high power consumption, which are not conducive to the application of high-power microwave system on mobile platform. In order to reduce the size of the foilless diode, improve the transmission efficiency of electron beams, and reduce the weight and power consumption of the guiding magnetic field system, an axial foilless diode with a composite guiding magnetic field system is developed in this paper. By adjusting the structure size and magnetic field parameters of solenoid coil, permanent magnet, and soft magnet, the configuration of the composite magnetic field is optimized. The diameter of the anode tube is about 40% smaller than that of the original structure, and the weight and power consumption of the guiding magnetic system are about 40% lower than that of the original system when the same axial magnetic field intensity in the uniform region is generated. When the magnetic field strength of the permanent magnet is set as 1.4 T and that of the solenoid coil is in the range of 0.5 T∼1 T, the electron beam transmission efficiency is 100%, and the diode impedance is adjustable in the range of 100 Ω∼240 Ω. The experimental results verify the correctness of the simulation analysis. The experimental results show that when the magnetic field strength of the solenoid coil is 0.98 T (0.5 T) and that of the permanent magnet is 1.4 T, the transmission efficiency of the high-current annular electron beam with a peak voltage of 636 kV (590 kV) and a peak current of 3.3 kA (2.6 kA) is 100%, and the diode impedance is about 194 Ω (220 Ω).

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3