Instability Condition Derivation for Hydraulic AGC System under Pressure Closed-Loop Control

Author:

Zhu Yong123ORCID,Li Guangpeng1,Tang Shengnan1ORCID,Jiang Wanlu4ORCID,Qian Pengfei1,Zheng Zhi56,Zheng Zhijian3

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

3. Ningbo Academy of Product and Food Quality Inspection, Ningbo 315048, China

4. Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China

5. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China

6. HUIDA Sanitary Ware Co., Ltd., Tangshan 063000, China

Abstract

In strip rolling, hydraulic automatic gauge control (HAGC) system is the key element to guarantee the precision of strip gauge. The stability of the kernel pressure closed loop (PCL) in the HAGC system plays an essential role in guaranteeing the rolling process with high performance. Nevertheless, there is some difficulty in exploring the instability mechanism of the HAGC system due to the fact that the PCL is a representative nonlinear closed-loop control system. In this work, for each component of the HAGC system, the mathematical model was established. And on the basis of the linking relation of various elements, we derived the incremental transfer model of the PCL system. Furthermore, in accordance with the deduced information transfer relation, the transfer block diagram of disturbing variable of the PCL system was obtained. Moreover, for the purpose of deriving the instability condition of the PCL system, the Popov frequency criterion was employed. The instability conditions of the HAGC system were obtained under PCL control. Furthermore, the derived instability conditions of the HAGC system were experimentally verified under various working conditions. The research results provide a fundamental foundation for studying the instability mechanism of the HAGC system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3