Genomic and Transcriptome Analysis to Identify the Role of the mTOR Pathway in Kidney Renal Clear Cell Carcinoma and Its Potential Therapeutic Significance

Author:

Che Xiangyu1ORCID,Qi Xiaochen1,Xu Yingkun2ORCID,Wang Qifei1ORCID,Wu Guangzhen1ORCID

Affiliation:

1. Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China

2. Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China

Abstract

The mTOR pathway, a major signaling pathway, regulates cell growth and protein synthesis by activating itself in response to upstream signals. Overactivation of the mTOR pathway may affect the occurrence and development of cancer, but no specific treatment has been proposed for targeting the mTOR pathway. In this study, we explored the expression of mTOR pathway genes in a variety of cancers and the potential compounds that target the mTOR pathway and focused on an abnormal type of cancer, kidney renal clear cell carcinoma (KIRC). Based on the mRNA expression of the mTOR pathway gene, we divided KIRC patient samples into three clusters. We explored possible therapeutic targets of the mTOR pathway in KIRC. We predicted the IC50 of some classical targeted drugs to analyze their correlation with the mTOR pathway. Subsequently, we investigated the correlation of the mTOR pathway with histone modification and immune infiltration, as well as the response to anti-PD-1 and anti-CTLA-4 therapy. Finally, we used a LASSO regression analysis to construct a model to predict the survival of patients with KIRC. This study shows that mTOR scores can be used as tools to study various treatments targeting the mTOR pathway and that we can predict the recovery of KIRC patients through the expression of mTOR pathway genes. These research results can provide a reference for future research on KIRC patient treatment strategies.

Funder

Scientific Research Fund of Liaoning Provincial Education Department

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3