Affiliation:
1. College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China
2. Engineering Research Center of Intelligent PSE, Ministry of Education of China, Beijing 100029, China
3. School of Computer Science within the College of Science and Health, Technological University Dublin, Dublin, Ireland
Abstract
With the rapid development of the internet technology, a large amount of internet text data can be obtained. The text classification (TC) technology plays a very important role in processing massive text data, but the accuracy of classification is directly affected by the performance of term weighting in TC. Due to the original design of information retrieval (IR), term frequency-inverse document frequency (TF-IDF) is not effective enough for TC, especially for processing text data with unbalanced distributions in internet media reports. Therefore, the variance between the DF value of a particular term and the average of all DFs
, namely, the document frequency variance (ADF), is proposed to enhance the ability in processing text data with unbalanced distribution. Then, the normal TF-IDF is modified by the proposed ADF for processing unbalanced text collection in four different ways, namely, TF-IADF, TF-IADF+, TF-IADFnorm, and TF-IADF+norm. As a result, an effective model can be established for the TC task of internet media reports. A series of simulations have been carried out to evaluate the performance of the proposed methods. Compared with TF-IDF on state-of-the-art classification algorithms, the effectiveness and feasibility of the proposed methods are confirmed by simulation results.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献