Appling an Improved Method Based on ARIMA Model to Predict the Short-Term Electricity Consumption Transmitted by the Internet of Things (IoT)

Author:

Guo Ni1ORCID,Chen Wei12ORCID,Wang Manli3,Tian Zijian1,Jin Haoyue1

Affiliation:

1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China

3. School of Physics &Electronic Information Engineering, HeNan Polytechnic University, Jiaozuo 454000, China

Abstract

The rapid development of the Internet of Things (IoT) has brought a data explosion and a new set of challenges. It has been an emergency to construct a more robust and precise model to predict the electricity consumption data collected from the Internet of Things (IoT). Accurately forecasting the electricity consumption is a crucial technology for the planning of the energy resource which could lead to remarkable conservation of the building electricity consumption. This paper is focused on the electricity consumption forecasting of an office building with a small-scale dataset, and 117 daily electricity consumption of the building are involved in the dataset, among which 89 values are selected as the training dataset and the remaining 28 values as the testing dataset. The hybrid model ARIMA (autoregression integrated moving average)-SVR (support vector regression) is proposed to predict the electricity consumption with different prediction horizons ranging from 1 day to 28 days. The model performances are assessed by three evaluation indicators, respectively, are the mean squared error (MSE), the root mean square error (RMSE), and the mean absolute percentage error (MAPE). The proposed model ARIMA-SVR is compared with the other four models, respectively, are the ARIMA, ARIMA-GBR (gradient boosting regression), LSTM (long short-term memory), and GRU (gated recurrent unit) models. The experiment result shows that the ARIMA-SVR model has lower prediction errors when the prediction horizon is within 20 days, and the ARIMA model is better when the prediction horizon is in the interval of 20 to 28 days. The provided method ARIMA-SVR has higher flexibility, and it is a great choice for electricity consumption prediction with more accurate results.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference26 articles.

1. Data-driven occupant-behavior analytics for residential buildings

2. Short-Term Load Forecasting for Spanish Insular Electric Systems

3. The use of ARIMA models for reliability forecasting and analysis

4. Coronavirus (COVID-19): ARIMA based time-series analysis to forecast near future;H. Tandon,2020

5. Time series analysis and forecasting of COVID-19 cases using LSTM and ARIMA models;A. Barman,2020

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3