Research on Coal and Rock Type Recognition Based on Mechanical Vision

Author:

Zhang Qiang12,Gu Jieying1ORCID,Liu Junming1

Affiliation:

1. School of Mechanical Engineering, Liaoning Technical University, Fuxin, China

2. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China

Abstract

In order to identify different kinds of coal, rock, and gangue, the FPV integrated image transmission camera is used to collect images of 6 types of coal, 8 types of rocks, and 2 types of coal gangue, and the images are processed based on the two-dimensional discrete wavelet transform (2D-DWT) based on the steerable pyramid decomposition (SPD). The maximum likelihood estimation method is used to estimate the parameters, and, the coal and rock types are judged by comparing the similarity of each image. The results show the following: (1) in the eight kinds of rocks, the recognition accuracy of shale and limestone is 90%, that of anorthosite is 95%, and those of other rocks are 100%; (2) the accuracy of comprehensive identification of coal, rock, and gangue is 93%, the comprehensive of coal and gangue is 78%, and the rock classification is 97%; (3) the identification time of 6 types of coal samples, 8 types of rock samples, and 2 types of coal gangue samples are in the range of 2 s∼3 s, which is far less than 10 s, which can meet the requirements of coal and rock identification in terms of recognition speed; and (4) according to 20 groups of data, the range, variance, and standard deviation of the same coal gangue sample meet the accuracy requirements of coal and rock identification. The identification method provides an effective method to improve the efficiency of coal separation, effectively determine the distribution of coal and rock, and timely adjust the cutting height of shearer drum and the operation parameters of various fully mechanized mining equipment, so as to improve the recovery rate of coal resources.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3