Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS

Author:

Li Hongquan12ORCID,Gong Anmin3ORCID,Zhao Lei24ORCID,Zhang Wei5ORCID,Wang Fawang12ORCID,Fu Yunfa12ORCID

Affiliation:

1. Institute of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

2. Brain Cognition and Brain-Computer Intelligence Fusion Innovation Group, Kunming University of Science and Technology, Kunming 650500, China

3. Department of Information Engineering, Engineering University of Armed Police Force, Xian 710086, China

4. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China

5. Kunming Medical University, Kunming 650500, China

Abstract

Objectives. Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is expected to provide an optional active rehabilitation training method for patients with walking dysfunction, which will affect their quality of life seriously. Sparse representation classification (SRC) oxyhemoglobin (HbO) concentration was used to decode walking imagery and idle state to construct fNIRS-BCI based on walking imagery. Methods. 15 subjects were recruited and fNIRS signals were collected during walking imagery and idle state. Firstly, band-pass filtering and baseline drift correction for HbO signal were carried out, and then the mean value, peak value, and root mean square (RMS) of HbO and their combinations were extracted as classification features; SRC was used to identify the extracted features and the result of SRC was compared with those of support vector machine (SVM), K-Nearest Neighbor (KNN), linear discriminant analysis (LDA), and logistic regression (LR). Results. The experimental results showed that the average classification accuracy for walking imagery and idle state by SRC using three features combination was 91.55 ± 3.30%, which was significantly higher than those of SVM, KNN, LDA, and LR (86.37 ± 4.42%, 85.65 ± 5.01%, 86.43 ± 4.41%, and 76.14 ± 5.32%, respectively), and the classification accuracy of other combined features was higher than that of single feature. Conclusions. The study showed that introducing SRC into fNIRS-BCI can effectively identify walking imagery and idle state. It also showed that different time windows for feature extraction have an impact on the classification results, and the time window of 2–8 s achieved a better classification accuracy (94.33 ± 2.60%) than other time windows. Significance. The study was expected to provide a new and optional active rehabilitation training method for patients with walking dysfunction. In addition, the experiment was also a rare study based on fNIRS-BCI using SRC to decode walking imagery and idle state.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3