An Optimization Method for Mobile Edge Service Migration in Cyberphysical Power System

Author:

Cao Qian1ORCID,Wu Qilin1ORCID,Liu Bo1ORCID,Zhang Shaowei2ORCID,Zhang Yiwen3ORCID

Affiliation:

1. School of Information Engineering, Chaohu University, Chaohu 238000, China

2. School of Computer Science and Technology, Anhui Wenda University of Information Engineering, Hefei 230000, China

3. School of Computer Science and Technology, Anhui University, Hefei 230000, China

Abstract

To relieve the pressure of processing computation-intensive applications on mobile devices and avoid high latency during data transmission, edge computing is proposed to solve this problem. Mobile edge computing (MEC) allows the deployment of MEC servers at the edge of the network to interact with users on the premise of low transmission delay, thereby improving the quality of service (QoS) for users. However, due to the high mobility of users, with the continuous change of geographical location, when users exceed the signal range of the MEC server, the services they request on the MEC server will also be migrated to other MEC servers. The handoff process may involve high response delays caused by service forwarding, thereby greatly degrading QoS. For the above problems, in this paper, a service migration optimization method based on transmission power control is proposed. First, according to the transmission power of the MEC server, the user’s activity range is divided into multiple subregions based on a Voronoi diagram. Therefore, there is one MEC server in each subregion, and the size of each subregion is adjusted by controlling the transmission power of the MEC server to minimize the number of wireless handoffs and the energy consumption of the MEC server. Then, the particle swarm optimization (PSO) is adopted to solve the above multiobjective optimization problem. Finally, the effectiveness of the proposed method is verified through extensive experiments.

Funder

Hefei Saile Education Technology Co., Ltd

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3