An Improved Sparsity Adaptive Matching Pursuit Algorithm and Its Application in Shock Wave Testing

Author:

Zhang Jiahui1,Wang Xiao2ORCID,Ju Mingchi1ORCID,Han Tailin1ORCID,Wang Yingzhi1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. School of Biomedical Engineering, Hainan University, Haikou 570228, China

Abstract

In the compressed sensing (CS) reconstruction algorithms, the problems of overestimation and large redundancy of candidate atoms will affect the reconstruction accuracy and probability of the algorithm when using Sparsity Adaptive Matching Pursuit (SAMP) algorithm. In this paper, we propose an improved SAMP algorithm based on a double threshold, candidate set reduction, and adaptive backtracking methods. The algorithm uses the double threshold variable step-size method to improve the accuracy of sparsity judgment and reduces the undetermined atomic candidate set in the small step stage to enhance the stability. At the same time, the sparsity estimation accuracy can be improved by combining with the backtracking method. We use a Gaussian sparse signal and a measured shock wave signal of the 15psi range sensor to verify the algorithm performance. The experimental results show that, compared with other iterative greedy algorithms, the overall stability of the DBCSAMP algorithm is the strongest. Compared with the SAMP algorithm, the estimated sparsity of the DBCSAMP algorithm is more accurate, and the reconstruction accuracy and operational efficiency of the DBCSAMP algorithm are greatly improved.

Funder

Department of Science and Technology of Jilin Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference20 articles.

1. Compressed sensing

2. The restricted isometry property and its implications for compressed sensing

3. Message-passing algorithms for compressed sensing

4. WangX.Research of main techniques in distributed transient parameters wireless transmission system2017Jilin, ChinaCUSTPh.D. dissertation

5. Shock wave signal acquisition based on improved Subspace tracking algorithm;K. Wang;Journal of Changchun University of Science & Technology,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3