Affiliation:
1. College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract
In the present paper, the steady RANS (Reynolds-Averaged Navier-Stokes) simulations based on our independently developed CFD (Computational Fluid Dynamics) solver NUAA-Turbo 2.0, are carried out to investigate the shock wave/tip leakage vortex (SW/TLV) interaction in two representative transonic axial fan rotors, NASA Rotor 67 and NASA Rotor 37. The intent of this study is mainly to verify if an identification method derived from relevant theories is suitable for shock-induced vortex stability in the real engineering environment. As the additional findings, a universal tip vortex model is established and the characteristics of vortex breakdown or not are also summarized under different load levels. To ensure the prediction accuracy of all numerical methods selected in this research, detailed comparisons are made between computational and experimental results before flow analysis. The excellent agreement between the both indicates that the current code is capable of capturing the dominant secondary flow structures and aerodynamic phenomenon, especially the vortex system in tip region and SW/TLV interaction. It is found that three vortical structures such as tip leakage vortex (TLV), shock-induced vortex (SIV), tip separation vortex (TSV) in addition the tip leakage vortex-induced vortex (TLV-IV, which only occurs when the TLV strength increases to a certain extent) frequently exist near the blade tip and then abstracted as a tip vortex model. A stable TLV after passing through the passage shock is commonly characterized by tight rolling-up, slow deceleration and slight expansion. Conversely, the vortex behaves in a breakdown state. The final verification results show that the above two vortex states can be satisfactorily detected by the theoretical discriminant introduced in this work.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献