Experimental-Numerical Study of Indexation of Scenic Road Vertical Alignment in China

Author:

Wang Ronghua1ORCID,Liu Xingliang2ORCID,Yuan Zhe3ORCID

Affiliation:

1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China

2. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China

3. Jinan Urban and Rural Transportation Bureau, Jinan 250014, China

Abstract

The vertical alignment design method of road in scenic spots does not evolve enough along the vehicle’s rapid variation. Values of the maximum longitudinal slope (MLS) and longest slope length (LSL) applicable to scenic roads used by the environmental-friendly vehicle (EFV) are not provided. To compensate for this shortage, a multibody vehicle dynamic model in uphill traving is built, providing the static equilibrium state and dynamic balancing process of a typical vehicle. MLS and LSL values in scenic roads are obtained based on this model through numerical simulation, considering typical EFV, maximum velocity loss (MVL), and ideal velocity loss (IVL). Field experiments for verifying the results are also carried out in Huashan Mountain, Cuihua Mountain National Park, and Taiping Forest Park, using two EFV types. MLS and LSL values in scenic roads applicable to EFV obtained in this research vary from 7.8% to 10.2% and 200 to 955 m, respectively, and both are larger than the corresponding values in current criteria. According to verification results, relative errors of climbing velocity vary from 0.0104 to 0.0205, showing the dynamic model’s accuracy and further proving the practicality of MLS and LSL values obtained. The results obtained in this research lay a foundation for establishing the scenic-road vertical alignment design method.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference39 articles.

1. Forecasting tourism demand: A review of empirical research

2. The motor vehicle and the environment: balancing between accessibility and habitat fragmentation;F. C. Jaarsma

3. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3