Side-Channel Leakage Detection with One-Way Analysis of Variance

Author:

Yang Wei1ORCID,Jia Anni1

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Side-channel analysis (SCA) is usually used for security evaluation to test the side-channel vulnerability of a cryptographic device. However, in practice, an analyser may need to cope with enormous amounts of side-channel measurement data to extract valuable information for SCA. Under the circumstances, side-channel leakage detection can be used to identify leakage points which contain secret information and therefore improve the efficiency of security assessment. This investigation proposes a new black-box leakage detection approach on the basis of the one-way analysis of variance (ANOVA). In accordance with the relevance between leakage points and inputs of a cryptographic algorithm, the proposed method divides side-channel samples into multiple classes and tests the difference among these classes by taking advantage of the one-way ANOVA. Afterwards, leakage points and nonleakage points can be distinguished by determining whether the null hypothesis is accepted. Further, we extend our proposed method to multichannel leakage detection. In particular, a new SCA attack with a F -statistic-based distinguisher is capable of developing if the input of the leakage detection approach is replaced by a sensitive intermediate variable. Practical experiments show the effectiveness of the proposed methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference23 articles.

1. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems;P. C. Kocher

2. Differential power analysis;P. C. Kocher

3. Electromagnetic analysis: concrete results;K. Gandolfi

4. RSA key extraction via low-bandwidth acoustic cryptanalysis;D. Genkin

5. A testing methodology for side-channel resistance validation;G. Goodwill

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3