Affiliation:
1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
Abstract
This study aimed to determine the split ratio, flow-field structure, and effect of different shaped channels to sudden pollution accidents in a generalized complex canal system of a wetland park, both experimentally and numerically. The three-dimensional instantaneous velocities at a typical section of each channel in the generalized model were measured experimentally using an acoustic Doppler velocimeter. The results showed that the split ratio calculation formula of three parallel channels could be derived under the condition of considering the frictional head and the local head losses. The water depth, velocities, and pollutant diffusion were widely influenced by changes in the cross-sectional shape and channel plane shape. The pollutants were trapped by stable vortices and transverse circulation due to shear force and secondary flow, thus delaying the diffusion of pollutants. The research results reported herein can help provide technical support for the normal operation of complex canal systems.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献