Deep Multimodal Fusion Autoencoder for Saliency Prediction of RGB-D Images

Author:

Huang Kengda1,Zhou Wujie12ORCID,Fang Meixin2

Affiliation:

1. School of Information and Electronic Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China

2. Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

In recent years, the prediction of salient regions in RGB-D images has become a focus of research. Compared to its RGB counterpart, the saliency prediction of RGB-D images is more challenging. In this study, we propose a novel deep multimodal fusion autoencoder for the saliency prediction of RGB-D images. The core trainable autoencoder of the RGB-D saliency prediction model employs two raw modalities (RGB and depth/disparity information) as inputs and their corresponding eye-fixation attributes as labels. The autoencoder comprises four main networks: color channel network, disparity channel network, feature concatenated network, and feature learning network. The autoencoder can mine the complex relationship and make the utmost of the complementary characteristics between both color and disparity cues. Finally, the saliency map is predicted via a feature combination subnetwork, which combines the deep features extracted from a prior learning and convolutional feature learning subnetworks. We compare the proposed autoencoder with other saliency prediction models on two publicly available benchmark datasets. The results demonstrate that the proposed autoencoder outperforms these models by a significant margin.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Convolutional Neural Networks for the Assessment Research of Mental Health;Computational Intelligence and Neuroscience;2022-05-09

2. Dynamic Invariant-Specific Representation Fusion Network for Multimodal Sentiment Analysis;Computational Intelligence and Neuroscience;2022-01-24

3. Deep Tensor Evidence Fusion Network for Sentiment Classification;IEEE Transactions on Computational Social Systems;2022

4. Robot Localization and Scene Modeling Based on RGB-D Sensor;The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy;2021-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3