Enhancing Dynamic Binary Translation in Mobile Computing by Leveraging Polyhedral Optimization

Author:

Li Mingliang1ORCID,Pang Jianmin1ORCID,Yue Feng1ORCID,Liu Fudong1ORCID,Wang Jun1ORCID,Tan Jie1ORCID

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, Henan 450000, China

Abstract

Dynamic binary translation (DBT) is gaining importance in mobile computing. Mobile Edge Computing (MEC) augments mobile devices with powerful servers, whereas edge servers and smartphones are usually based on heterogeneous architecture. To leverage high-performance resources on servers, code offloading is an ideal approach that relies on DBT. In addition, mobile devices equipped with multicore processors and GPU are becoming ubiquitous. Migrating x86_64 application binaries to mobile devices by using DBT can also make a contribution to providing various mobile applications, e.g., multimedia applications. However, the translation efficiency and overall performance of DBT for application migration are not satisfactory, because of runtime overhead and low quality of the translated code. Meanwhile, traditional DBT systems do not fully exploit the computational resources provided by multicore processors, especially when translating sequential guest applications. In this work, we focus on leveraging ubiquitous multicore processors to improve DBT performance by parallelizing sequential applications during translation. For that, we propose LLPEMU, a DBT framework that combines binary translation with polyhedral optimization. We investigate the obstacles of adapting existing polyhedral optimization in compilers to DBT and present a feasible method to overcome these issues. In addition, LLPEMU adopts static-dynamic combination to ensure that sequential binaries are parallelized while incurring low runtime overhead. Our evaluation results show that LLPEMU outperforms QEMU significantly on the PolyBench benchmark.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3