Generation of Digital Art Composition Using a Multilabel Learning Algorithm

Author:

Li Wei1ORCID,Gong Xin1

Affiliation:

1. Department of Plastics Arts, Apparel Art Design College, Xi’an polytechnic university, Xi’an 710048, China

Abstract

The traditional methods for generating digital art composition have the disadvantage of capturing incomplete geometric information, which leads to obvious defects in the generation results. Therefore, a digital art composition generation method based on the multilabel learning algorithm is proposed in this research. Firstly, a preset series of grids are prepared to generate sampling and fractal pixels on the drawing base. Then, the preset grid construction is constructed by the interactive program of the preset grid library. After the stroke is drawn by the user, the actual motion trajectory of the pen is sampled by the digital panel, and the stroke information in the motion trajectory is obtained by the multilabel learning algorithm. Next, the steps of generating art composition are designed, including generating the skeleton of art composition, generating the geometric network structure of the skeleton, generating the sampling pixel and connecting the fractal pixel, and initializing other attributes of the mesh. Experimental results show that the proposed method has higher sampling rate and geometric information capture rate and has better application performance and prospect.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3