The Hydroethanolic Stem Bark Extract of Tieghemella heckelii (A.Chev.) Pierre ex Dubard (Sapotaceae) Produced N-Methyl-D-Aspartate (NMDA) Receptor-Dependent Analgesia and Attenuates Acute Inflammatory Pain via Disruption of Oxidative Stress

Author:

Kumatia Emmanuel K.1ORCID,Appiah-Opong Regina2

Affiliation:

1. Centre for Plant Medicine Research, Department of Phytochemistry, Mampong-Akwapim, Ghana

2. University of Ghana, Noguchi Memorial Institute for Medical Research, Department of Clinical Pathology, Accra, Ghana

Abstract

Background. Tieghemella heckelii stem bark is used in African traditional medicine to treat inflammatory pain conditions. However, these biological actions of the plant have not been proven. This study investigates the phytochemical composition and the mechanisms of analgesic and anti-inflammatory actions of the hydroethanolic stem bark extract of T. heckelii (THBE). Methods. Phytochemical composition of THBE was investigated using qualitative and quantitative phytochemical analyses. Anti-inflammatory activity was evaluated using the carrageenan-induced paw oedema assay. Analgesic activity was evaluated using hot plate and acetic acid-induced writhing assays. Mechanism of analgesic action was determined using pharmacological antagonist such as naloxone, atropine, flumazenil, nifedipine, or ketamine. Test agents were administered orally as follows: Tween 80 (5%) (control), diclofenac sodium (DS) 10/tramadol 9 mg/kg (standard), or THBE 10, 100, and 450 mg/kg. Glutathione peroxidase (GPx), superoxide dismutase (SOD), and lipid peroxidation levels were also measured. Results. THBE which contained 58.45% saponins, 229.04 ± 0.049 GAE mg/g phenolic compounds,and 0.482 ± 0.0028 QE mg/g flavonoids produced ( p  < 0.5) anti-inflammatory effect of 56.22% and analgesia of 330 ± 72% and 50.4% in the hot plate and writhing assays, respectively, at 10 mg/kg and inhibited oxidative stress by GPx and SOD elevation in rats during inflammation. Ketamine significantly blocked the analgesia of THBE, indicating NMDA receptor-dependent analgesic action. Whereas, naloxone, atropine, nifedipine, and flumazenil could not antagonize the analgesic action of THBE. Conclusion. These results show that THBE produced potent anti-inflammatory effect via disruption of oxidative stress and also generated NMDA receptor-dependent analgesia.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference46 articles.

1. General considerations of acute pain;B. A. Coda,2001

2. Pain-basic consideration;M. R. Rajagopal;Indian Journal of Anaesthesia,2006

3. Peripheral neural mechanisms of nociception;R. A. Meyer,1994

4. Peripheral and central mechanism of pain generation;H. G. Schaible;Handbook of Experimental Pharmacology,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3